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Robert Hermann 

1. INTRODUCTION 

Consider a differential equation of the form 

v"(t) -I- r(t)v(t) = 0 . (1.1) 

Classical Sturm-Liouville theory deals with such equations in which v(t) 
and r(t) a re scalar-valued functions of t[6]. The theory of these equations 
is well-known, and, of course, they appear in many contexts in both engi
neering and physics. However, the theory of systems of type (1.1) in which 
v(t) is a vector-valued function of t is considerably less developed and 
well-known among workers in applied mathematics, despite the fact that 
many physical problems lead to such equations in a very natural way, 
part icularly in stability problems. M. Morse has developed the founda
tions for a successful generalization of the classical Sturm-Liouville 
theory to such systems [7]. This work has in recent years been extended 
and applied to various problems in global Riemannian geometry, and has 
led to a revitalization of this subject. Since this work does not seem to 
be well-known among its potential consumers in the applied fields, we aim 
to give here an exposition of some par ts . We will assume that the reader 
is conversant with the basic existence and uniqueness theorems for ordi 
nary differential equations and with the treatmient of linear algebra via the 
theory of vector spaces. 

We will now present enough notations and definitions to be able to 
state the main resul t : the Morse index theorem. The proof will be given 
in the second section. Since it may be difficult for the reader to see the 
forest for the t rees while reading the proof, we may point out here that 
the proof basically consists in putting together certain well-known ana
lytical techniques concerning systems of second-order linear differential 
equations with the basic ideas of the calculus of variat ions. The main dif
ference in our proof from Morse 's is that we try to work directly with 
the infinite-dimensional linear spaces that occur, whereas Morse, by a 
variety of ingenious analytical and geometric t r icks , t r ies to reduce the 
infinite-dimensional situation to a finite one. 



Let V be a vector space of finite dimensionl over the real numbers . 
Elements of V will be denoted by such let ters as u, v, w It will be 
assumed that V has a given fixed, positive-definite, symmetric bilinear 
form (u,v) -* <u,v>. Thus: 

<au -I- bv, aiUi + bjVi > = aaj <u,Ui> + abj <u,vi> 

+ aib <v,ui> -t bbi <v,vi> (L la ) 

for a,ai,b,bi £R (= real numbers), u,v,Ui,Vi eV 

<u,v> = <v,u> for u,veV . ( l . lb) 

<u,u> a 0 for ueV . <u,u> = 0 if and only if u = 0 . ( l . l c ) 

For veV, put ||v|| = <v,v>'^^. Recall that the following inequalities 
follow from the positive-definite condition: 

||u + v|| s ||u|| + l|v|| (triangle inequality) 

|<u,v> I s||u|| ||v|| . Equality holds if and only if au + bv = 0 for 

some a,beR. (Schwarz inequality). 

We must also consider linear transformations of V onto itself, 
usually denoted by R,S,T,..., and bilinear symmetric forms other than 
< ,> that will not necessari ly be positive-definite [i.e., satisfy ( l . la), 
b), but not c)], and that will be denoted by Q( , ). A linear t ransforma

tion R: V-'V is said to be symmetric if 

<R(u),v> = <u,R(v)> for u, v£V 

t will be a real parameter extending over the interval [O, <») or a 
subinterval. We will consider vector-valued functions of t, denoted usually 
W u(t), v(t), etc., defined over an interval and usually continuous, piece-
wise C ,̂ and taking values in V. u'(t), u"(t), dv/dt, etc. , denote the deriva
tive with respect to t. 

We will be considering differential operators of the form 

V ^ v"(t) -I- Rt(v(t)), also denoted by: (1.2) 

J = —• + Rt 
dt^ 

It seems to be an open problem to extend the theory to infinite-
dimensional space. 



where t -* R̂ . is a one-parameter family of symmetric linear t ransforma
tions of V. (it is possible to generalize the theory by including some kinds 
of t e rms in v' on the right-hand side of (1.2), but we prefer to t reat this 
simpler case , referr ing to Morse [7] for a complete treatment. 

We must also consider boundary conditions: Algebraically, a 
boundary condition is an ordered pair (W,Q) consisting of a subspace 
WCV and a bilinear, symmetr ic form (u,v) -• Q(u,v) defined on W alone. 

One fundamental problem may be described as follows: Find a 
solution of 

v"(t) -I- Rj(v(t)) = 0, 0£t==oo, subject to the following (1.3) 

boundary conditions; 

v(0)ew, <v'(0),w> = -Q(v(0),w) f o r a l l w e W ; (1.4) 

v(a)eW^, <v'(0),w> = -Qa-(v(a),w) f o r a l l w e W ^ , (1.5) 

for a given number a >0 , and two sets (W,Q) and (wa,Qa) of boundary con
ditions. We refer to (1.4) and (1.5) as , respectively, left- and right-hand 
boundary conditions. 

There is a problem in the calculus of variations associated with 
( l .3)-( l .5) that is the foundation for the Morse treatment. Proceed as 
follows to find it: 

Suppose v(t), O s t S a , satisfies ( l .3)-( l .5) . Then: 

- f ^ < v " ( t ) + Rt(v(t)), v(t)> 
Jo 

= -<v'(t) ,v(t)>|^ -t r^ [<v'(t),v'(t)> - <Rt(v(t),v(t)>] dt 
0 Jo 

/

a 
[||v'|| ' - <RtV,v>] dt .1 

u 

This suggests the following definition: Suppose v(t), O S t ^ a , is 
a curve in V. Define: 

I(v) = Q^(v(a),v(a)) - Q(v(0),v(0)) + f \\v'\\ ' - <Rv,v> dt , (1.6) 

Where it is felt that it will lead to no confusion, we will compress the 
notation by omitting t. 



and call it the index of the curve v. If our boundary-value problem (1.3-5) 
admits a solution, there is a curve v with l(v) = 0; hence, it is suggested 
that we turn this remark around and try to minimize l(v) by a curve v(t) 
satisfying (1.3-5). This is an ordinary variational problem. It is readily 
verified that its Euler equations are (1.3), but this fact will remain in 
the background. 

In this paper we will r es t r i c t ourselves to the case in which the 
right-hand boundary conditions (W^,Q^) are identically zero. 

Definition. A point a e(0,a=) is said to be a focal point for the 
operator and boundary condition (W,Q) if there is a non-tr ivial , C^ curve 
v(t) in V, 0 £ t £a , satisying: 

J(v) = 0 ; 

v(0) eW 

<v'(0),w> = -Q(v(0),w) for all weW; and 

v(a) = 0 

The index of such a focal point is equal to the dimiension of the l inear 
space of all curves satisfying these conditions (hence, is always infinite 
and no greater than the dimension of V). 

Definition. Let [0,a] be an interval of real numbers . Let n(0,a) 
be the space of continuous, piecewise C^ curves t -• v(t), 0 < t £ a , in V 
satisfying the following conditions: 

v(0) e W ; 

<v'(0),w> = -Q(v(0),w) for all weW ; 

v(a) = 0 

Since two such curves can be added pointwise and multiplied by real con
stants, fi(0,a) is a vector space over the real numbers . For ven(0 ,a ) , let: 

I(v) = -Q(v(0),v(0)) -̂  r | | v ' ( t )P - <R^(v),v> dt . 

Define the index of the interval [0,a] as the maximum number of l inearly 
independent elements of n(0,a) on which the function I is negative. 

Thus, there are the two distinct ideas of index of a focal point and 
index of a closed interval [0,a], They are related via the following main 
theorem: 



Morse Index Theorem. The index of an interval [0,a] is finite and 
equal to the sum of indices of the focal points contained in the open interval 
(0,a). It is also equal to the maximal number of linearly independent e le
ments of fl(0,a) that are C' and are eigenfunctions of the differential opera
tor J = (d / d t ) + R(- for positive eigenvalues. 

As a general intuitive remark, notice that the index of an interval 
is an analytical invariant of the operator J and boundary condition (W,Q), 
while the sum of the indices of the focal points is more like a topological 
invariant. Thus, the index of the interval may be expected to vary reason
ably smoothly when J,(W,Q), or [0,a] are varied in a reasonably smooth 
way. As such a variation is performed, it is not expected that each focal 
point var ies smoothly; the remarkable fact contained in the Index Theorem 
is that the sum of indices of the focal points does vary in a more reasonable 
way. Another intuitive remark is that the Index Theorem provides the 
foundation for a perturbation-theory approach to the problem of finding 
focal points. 

2. PROOF OF THE MORSE INDEX THEOREM 

Let V, (W,Q), J = (dYdt^) + Rt, 0(0,a), etc. , be as described in the 
introduction. They will be considered as fixed throughout the discussion. 

The proof of the Index Theorem will be broken up into smaller 
steps. 

Lemma 2.1. Given a pair (VO,UQ) of vectors in V, there is a unique 
curve in V: t — v(t), 0< t < °°, satisfying J(v) = 0 and: v(0) = Vp, v'(0) = 
UQ. In par t icular , if VQ = UQ = 0, then v(t) = 0. If VQ, UQ, and the coeffi
cients of J depend continuously on additional pa ramete r s , so do the 
re ta i l ing solutions, and the dependence is uniformly continuous for t 
ranging over a bounded closed interval. 

This follows from the basic existence theorem for ordinary differ
ential equations [4]. 

Lemma 2.2. The vector space of solution curves of J = 0 that a re 
C^ and satisfy the (W,Q) boundary condition at t = 0 has the same dimen
sion as V. 

Proof. For later reference, we will prove a little more and develop 
additional notations. Suppose dim V = n, dim W = m, dim W = n-m. 
(W-'- denotes the orthogonal complement of W in V with respect to the 
form < , > . Explicitly, 

W-L = {ueV: <u,w> = 0 f o r a l l w e W } .) 



Adopt the following ranges of indices: 

l £ i , j , . . . < n ; l=Sa,b,. . .<m ; m + 1 £ a, /3, . . . < n . (2.1) 

Adopt a fixed orthonormal basis (u^) of V such that (u^) and (UQ.) a r e , r e 
spectively, orthonormal bases of W and W-'-. Then, we can find n-solution 
curves of J = 0, denoted by Vi(t), 0 £ t < t", l ^ i S n , such that: 

v^(0) = u^ , l < a £ m . (2.2a) 

<v^(0),w> = -Q(ua,w)"' 
, for all weW, 1 < a £ m (2.2b) 

v^(0)eW ' 

va(0) = 0 1 (2.2c) 
>• for m + 1 s a £ n 

^a(O) = "a J (2.2d) 

(The existence and uniqueness of solution curves satisfying these condi
tions follow easily from Lemma 2.1.) Note also that these curves satisfy 
the (W,Q)-boundary condition at t = 0. 

We show that the curves Vj(t), 1 s i <n, are linearly independent. 
Suppose there is a linear relation of the form: 

n 
ZCiVi(t) = 0 . 
i 

Setting t = 0, using (2.2a) and (2.2c), we have: 

I Ĉ â = 0 , 
a 

implying Cĝ  = 0, implying 

Y, Cav(t) = 0 . 
a 

Differentiating, setting t = 0, and using (2.2d), we have: 

y 

a Caua = 0 . 

forcing CQ. = 0, whence linear independence of the Vi(t). 



To complete the proof of Lemma 2.2, we show that every solution 
curve v(t) if J = 0 satisfying the (W,Q)-boundary condition at t = 0 can 
be writ ten as a sum of the vi(t) with constant coefficients. Now, we have: 

v(0)eW ; hence v(0) can be written as : 

v(0) = Y, CaUa = X ^aVa CaVa(O) 
a a 

The solution curve v(t) - /^ CaVa(t) is zero for t = 0; hence its derivative 
a 

at t = 0 can be written as a sum 

Z ^ a ^ a = Z CaVci(O) 
a 

Thus, v(t) - 2_, CiVi(t) is a solution of J = 0, is zero at t = 0, and its first 
i 

derivative is zero at t = 0; hence is identically zero. Q.E.D. 

For future reference, we shall refer to the basis (vi(t)) of solutions 
of J = 0 and the (W,Q)-boundary condition constructed above as a canonical 
bas is . 

Lemma 2.3. If v(t) and w(t) are two solutions of J = 0 satisfying 
the (W,Q)-boundary condition at t = 0, then: 

<v'(t), w(t)> = <v(t), w'(t)> f o r 0 £ t - = o o . (2.3) 

Proof. Note the identity: 

4- (<v'(t),w(t)> - <v( t ) ,w ' ( t )» = <v"(t),w(t)> + <v'(t),w'(t)> 
dt 

-<v'(t) ,w'(t)> -< v(t),w"(t)> 

= <-Rt(v(t)),w(t)> -̂  <v(t),Rt(w(t))> = 0 

obtained by use of the symmetry property of Rt. Now, 

<v'(0),w(0)> - <v(0),w'(0)> = -Q(v(0),w(0)) -t Q(v(0),w(0)) 

= 0 

Lemma 2.4. If e is sufficiently small, there are no focal points on 
the interval [O, e]. 



Proof . Let (vi(t)), 1 < i — n, be a c a n o n i c a l b a s i s for s o l u t i o n s of 
J = 0 sa t i s fy ing the (W,Q) -bounda ry cond i t ion a t t = 0. 

Define c u r v e s wj(t) a s fol lows: 

wa{t) = Va(t) for 1 £ a £ m ; 

v a ( t ) 
wa(t) - ^"'^ rn -F 1 £ ot £ n 

By (2.2), wa is cont inuous at t = 0 and e q u a l s t h e r e the v a ( 0 ) = u a . Then 
the v e c t o r s (wi(t)) a r e l i n e a r l y independen t for t = 0, h e n c e by con t inu i ty 
a l s o for t suff icient ly s m a l l , s ay for 0 < t < e. Then [0 ,e] can con ta in 
no focal po in t s . F o r , suppose o t h e r w i s e , i . e . , v(t) is a so lu t ion of J = 0 
sa t i s fy ing the (W,Q)-boundary condi t ion at t = 0 and v a n i s h i n g a t , say , 
t = e. By L e m m a 2.2, v(t) can be w r i t t e n a s ? Civi( t ) , for c o n s t a n t s 
Cj. Hence , a l s o , 

0 = v(e) = I Cawa(e) + Z C a W a ( e ) • £ 
a a 

Thus , C^ = 0 = C(x, hence v(t) = 0, a c o n t r a d i c t i o n . 

L e m m a 2.5. Suppose to£(0, °°) is a focal point . Then, for £ suffi
c ien t ly s m a l l , [to - £ , to + £] con ta ins no o the r focal point . We then c o n -
clude, us ing a l s o L e m m a 2.4, that e a c h bounded i n t e r v a l c o n t a i n s only a 
finite n u m b e r of focal po in t s . 

Proof . Suppose vi( t) , 1 s i £ n, is any b a s i s of so lu t i ons of J = 0 
sa t is fying the (W,Q)-boundary condi t ion at t = 0, such tha t : 

Vi(to) = 0 for 1 £ i s p 

but vi(to) a r e l i n e a r l y independent for p + 1 £ i =s n (p is then the index of 
the focal point) . By f o r m u l a (2.3), 

<vi(to), Vj(to)> = 0 for 1 S i S p, and p + 1 < j £ n 

The vj(to) m u s t be l i n e a r l y independen t for 1 < i S p [ o t h e r w i s e , the Vi( t ) , . . . 
vp(t) could not be l i n e a r l y independent ] ; h e n c e , v ! ( to ) , . . . , v ' ( to ) ,v , , ( to ) , . . . , 
Vj^(to) m u s t fo rm a b a s i s for V. Now, 

I- " i W ,̂  , ^ 
l im -—— = vi(to) for 1 S i S p ; 
T-»tn 



hence, if £ is sufficiently small , the vectors 

vi(to+ £) 
2 • Vj(to-fe), f o r l < i < ] p + 1 S j s n 

form a basis for V. The proof that there are no focal points on [to- £, to+ e] 
is now similar to that in Lemma 2.4. 

We need more notation. If v(t) is a curve in fi(0,a) and W(t), 
0 £ t £ a , is any continuous piecewise C' curve in V satisfying the (W,Q)-
boundary condition at t = 0, put: 

l(v,w ) = -Q(v(0),w(0)) -f p <v'(t) ,w'(t)>-<Rt(v(t)).w(t)> dt 
(2.4) 

Let fij(0,a) be the subset of curves v(t) in fi(0,a) defined by taking all 
linear combinations with constant coefficients of curves of the following 
type: For each to£(0,a] that is a focal point, consider a C^ curve v(t) in 
[0,to] that satisfies J = 0 and the (W,Q)-boundary condition at t = 0, and 
that vanishes at t = tp. Extend this curve over [0,a] by defining v(t) = 0 
f o r t o ^ t s a . Graphically, 

Then, 

The dimension of nj(0,a) as a real vector space is equal to 
the sum of indices of the focal points on the interval (0,a] . (2.5) 

Lemma 2.6. Let (vi(t)), 1 £ i £ n , O s t s a b e any basis for the 
vector space of curves in V that are C and satisfy J = 0. Suppose that 
v(t), 0 £ t £a , is a dlfferentiable curve in V such that: 

I(v,w) = 0 for all curves w(t), 0 <; t .̂  a, that_lie_in n j (0 , l ) . Then, 
v(t) admits a representat ion as : 

v(t) = Z ai(t)vi(t) f o r O < t < J (2.6) 

where the coefficients ai(t) a re continuous, piecewise C functions for 
0 £ t <a . 
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Proof . Obvious ly , v(t) a d m i t s s u c h a r e p r e s e n t a t i o n (2.6) v a l i d 
excep t p o s s i b l y for the v a l u e s of t tha t a r e foca l p o i n t s . We m u s t show 
the functions ai( t) ob ta ined in th i s way have a l i m i t a s t a p p r o a c h e s a 
focal point. Suppose , then, tha t to£(0 ,a ] is such a foca l po in t . We m a y 
suppose the b a s i s ( v j t ) ) is c h o s e n so tha t 

vi(to) = 0 for 1 s i S p ; 

(vi(to)) a r e l i n e a r l y independen t for p -f 1 £ i £ n 

By L e m m a 2 .3 , <vl( to) , Vj(to)> = 0 for 1 £ i ^ p , p + 1 ̂  j ^ n. As b e f o r e , 
this i m p l i e s that v'j(to) Vp(to), Vp+i(to),...,Vn(to) f o r m s a b a s i s for V. 
Then, for t c lose to IQ, 

P Vi(t) '̂  
v(t) = Y a i ( t ) ( t - t„) - i - + X ai( t )vi( t ) . 

i=i ^'^^ i=p+i 

F o r 1 £ i < p , 

l i m ^i(t) 
t^to t-to 

hence for t suff ic ient ly c lo se to IQ, 

= v:(to) 

^>(t) ^p(t) ,,, M 
Ft; Ft7'^p+'W > w 

f o r m s a b a s i s of V and depends in a C' way on t. Since v(t) is c o n t i n u o u s , 
the funct ions aj(t)(t-to) for 1 s i S p and a^(t) for p + 1 s i S n a r e con t inuous 

These r e m a r k s a r e va l id for any v tha t is m e r e l y c o n t i n u o u s . Now 
we want to take into a c c o u n t the fact tha t l(v,w) = 0 for a l l w £ f2 j (0 , l ) . 
F o r 1< j S p , l e t wj be the e l e m e n t s of n j ( 0 , l ) def ined a s fo l l ows : 

Wi(t) = Vi(t) for 0 £ t s to 
(2.7) 

w^(t) = 0 for to S t £ a 

. 0 = l(v,Wi) = -Q(v(0),w-(0)) -F [ <v ' ( t ) ,w l ( t )> -<Rt (v ( t ) ) ,Wi ( t )> dt 

e q u a l s , us ing (2,7), 

-Q(v(0),v.(0)) + f <v ' ( t ) , v j ( t )> - <Rt(v(t)) ,Vj( t )> dt 
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equals, after integrating by par ts and taking into account the fact that 
J(vi) = 0 and that v and vi satisfy the (W,Q)-boundary condition at 
t = 0, 

<v(to), v!(to)> . 

Thus, v(to) must be a linear combination of v , (tp),... ,Vn(to). We conclude 
that ^ 

lim a^(t)(t-to) = 0 for l ^ i S p 
t-*to 

Now, since v(t) is dlfferentiable, the functions ai(t)(t-to) for I S i ^ p are 
dlfferentiable at t = to. We conclude (using the definition of derivative) 
that lim a^(t) exists and equals 

t - to 

^ (ai(t)(t-to))j . Q.E.D. 
lt=to 

Lemma 2.7. Let v^(t), i s i S n , O S t S a , be a basis of curves in 
V that are C^ and satisfy J = 0 and the (W,Q)-boundary condition at t = 0. 
Suppose u(t) and v(t), 0 s t S a , are two curves in V admitting represen ta -
tions of the following type: 

u(t) = Y fi(t)vi(t) for O S t S a 

v(t) = Z fi(a)vi(t) f o r o s t s a 
i=i 

Suppose in addition that the functions f{(t) are continuous and piecewise C' 
for 0 *̂  t Sa , and that u(t) satisfies the (W,Q)-boundary condition at t = 0. 
Then 

I (u)ai (v) . 

Equality holds only if u = v. 

Proof. For e > 0, let 

;(u) = -Q(u(0),u(0)) + / | |u ' ( t ) | |^ - <Rt(u(t)),u(t)> dt 
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Now, 

u'(t) = X (fl(t)vi(t) + fi(t)v;(t)) 
i=i 

l|u'(t)||^ = I (f;(t)fj(t) <vi(t),vj(t)> + fi(t)fj(t) <v;(t),v:(t): 
i . j= ' 

+ f:(t)fj(t) <vi(t),v:(t)> + fi(t)fj(t) <v:(t),vj(t)>) 

J fi(t)fj(t) <vl(t),vj(t)> dt = fi(t)fj(t) <v:(t),vj(t)> 
£ 
- / fl(t)fj(t) <v!(t),Vj(t)> + fi(t)fj(t) <vl(t),vj(t)> 

£ 

+ fi(t)fj(t) <V-(t),Vj(t)> dt . 

Using the l a s t two iden t i t i e s and L e m m a 2 . 3 , we have 

a 

t = £ 

| | u ' ( t ) | | ^ d t = 
' £ -^e 

Y f[(t)vi(t)||^ + <Rt(u(t)), u(t)> 
i=i 

Q(u(a),u(a)) -F Q(u(£) ,u (£ ) ) . 

dt 

Hence ; 

I e ( a ) = r I I X f ; ( t )v i ( t ) | | ^d t 
Je i = i 

- Q(u(a) ,u(a)) + ( Q ( U ( £),u( e) ) - Q(u(0),u(0))) 

S i m i l a r l y , 

Ie(v) = -Q(v(a) ,v(a)) -̂  (Q(v(£) ,v (£) ) - Q(u(0),u(0)) 

hence 

l £ ( u ) - I e ( v ) = f \\Y f ; ( t )vi ( t ) | |^ dt 
Je i = i 

+ (Q(u(e ) ,u (£) ) - Q(u(0),u(0)) - ( Q ( v ( e ) , v ( £ ) ) - Q(v(0),v(0))) 
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Since all the other t e rms in this identity approach a limit, we have; 

„ a n 
1'™ / II Z fi(t)vi(t)|p dt exis ts . 
£-•0 Je i=i 

Since it must clearly be >0 unless i[(t) = 0, i.e., unless u(t) = v(t) for 
0 s t Sa , we have 

I(u)>l(v) , except if u = v. Q.E.D. 

This lemma is due to V/. Ambrose [2,3] and serves as a replacement 
for the arguments from the general calculus of variations that were used 
by Morse. 

Corollary to Lemma 2.7. The interval [0,a] contains no focal points 
if and only if l(u) > 0 for all curves u£r2(0,a). (in other words, the Morse 
index theorem holds if [0,a] contains no focal point.) 

We must now apply Lemma 2.7 in the special case in which W and 
Q are both zero ; focal points a re , in this case, called conjugate points. 
For the r eade r ' s convenience, we restate the definition in slightly different 
form. 

Definition. Let a and b be positive real numbers; a and b a re 
said to be mutually conjugate if there is a C^ curve v(t), not identically 
zero, satisfying: 

v" -I- Rt(v(t)) = 0 

and 

v(a) = v(b) = 0 

Lemma 2.8. Suppose that a and b are real numbers , OSa <b. 
such that the real number interval between them contains no pair of 
mutually conjugate points. Suppose that u(t) and v(t) 0 s t "= «>, are continuous 
curves such that: 

u is piecewise C and v is C . 

V sat isf ies: (•TT2+ Rt)('^) - ^• 

u(b) = v(b) 

u(a) = v(a). 
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Then, 

/j|v.(t)|l ' - <Rt(v( t ) ) ,v( t )> dt S / | | u ' ( t ) | | ' - <Rt(u( t ) ) ,u ( t )> dt 
Ja. 

Equal i ty holds only if u(t) = v(t) for a S t S b . 

Proof. F i r s t we dea l wi th the c a s e u(a) = v(a) = 0. By a t r a n s l a 
tion of the o r ig in of the t - a x i s , we can a l s o suppose tha t a = 0. The r e s u l t 
then follows f r o m L e m m a 2.7, s ince our h y p o t h e s e s imp ly tha t t h e r e a r e 
no focal points in the i n t e r v a l (0 ,b] , wi th r e s p e c t to the b o u n d a r y condi t ions 
W = 0 , Q = O . a t t = 0. 

Now we r educe the g e n e r a l c a s e u(a) = v(a) to the c a s e j u s t con 
s i d e r e d . By L e m m a 2.2 (s ince a and b a r e not m u t u a l l y conjuga te ) , t h e r e 
is a C cu rve w(t) sa t is fying w(b) = 0, w(a) = u(a) = v(a) , 

p - R. ) w 

Let u*(t) = u(t) - w(t), v*(t) = v(t) - w(t) . Since u*(a) = 0 = v*(a) , c a s e 1 
a p p l i e s , to give 

p b b 
/ | | u* ' ( t ) | | ^ - <Rj(u*(t)) ,u*(t)> dt a / | | v * ' ( t ) | P 

'^a. Ja. 

- <Rt(v*'( t)) ,(v*(t))> dt . 

But, the le f t -hand side of this inequal i ty i s : 

b 

/ 
| | u ' ( t ) | | 2 + | |w ' ( t ) | |2 - 2 <u ' ( t ) ,w ' ( t )> - <Rt(u( t ) ) ,u( t )> 

- <Rt(w(t)) ,w(t)> -̂  2 <Rt(u(t)) ,w(t)> d t 

e q u a l s , a f ter in tegra t ing by p a r t s and taking into accoun t the r e l a t i o n s 
sa t i s f i ed by w. 

j [ l l " ' ( ' ) r " <Rt("(t))."(t)>l dt - <w'{a),w(a)> 

-F 2 <u(a),w'(a)> - 2 <u(b),w'(b)> = T [i|u'{t)||2 

- <Rt(u(t)),u(t)>J dt + <v(a),w'(a)> - 2 <v(b),w'(b)> 

[since v(a)= u{a) = w(a)] 
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Now, 

d̂  
—r - Rt V* = 0 
dt^ W 

hence, the right-hand side of the above inequality is, after an integration 
by pa r t s , 

<v*'(b),v*(b)> - <v*(a),v*'(0)> = <v'(b)-w'(b),v(b)> 

since v*(a) = 0, and w(b) = 0. Similarly, 

o b 
/ | |v ' ( t) | |^ - <Rt(v(t)),v(t)> dt = <v'(b),v(b)> - <v'(a),v(a)> . 

Ja. 

Thus, 

o b 
/ | | ^ ' ( t ) | |^ - <Rt(u(t)),u(t)> dt =: 2 <v(b),w'(b)> - <v(a),w'(a)> 

^a 

+ <v'(b),v(b)> - <w'(b),v(b)> = <v(b),w'(b)> - <v(a),w'(a)> 

o b 
+ / | |v ' ( t ) | |^ - <Rt(v(t)),v(t)> d t+ <v'(a),v(a)> . 

Jai 

Now, 

- ^ « v ( t ) , w ' ( t ) > -<v ' ( t ) ,w(t)>) 
dt 

= <v'(t),w'(t)> -f <v(t),w"(t)> - <v"(t),w(t)> - <v'(t),w'(t)> 

= <v(t),Rt(w'(t))> - <Rt(v(t)),w(t)> = 0 . 

Hence, 

<v(b),w'(b)> = <v'(b),w(b)> + <v'(a),w(a)> - <v(a),w'(a)> 

equals, after using the relat ions w(b) = 0 and w(a) = v(a), 

<v'(a),v(a)> - <v(a),w'(a)> 

Putting the last relation together with the last inequality proves Lemma 2.8. 
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L e m m a s 2.7 and 2.8 m a y be r e g a r d e d a s p a r t i c u l a r a n a l y t i c a l 
tools needed to p r o v e the Index T h e o r e m . They r e a l l y con ta in f u n d a m e n t a l 
fac ts f r o m the ca l cu lu s of v a r i a t i o n s in a d i s g u i s e d f o r m . 

Now we p r o c e e d to a n o t h e r a n a l y t i c a l too l , p r o v i n g , a g a i n in s l igh t ly 
d i s g u i s e d f o r m , a " c o m p a c t n e s s " p r i n c i p l e for so lu t i ons of the type of dif
f e r e n t i a l equa t ions we have been c o n s i d e r i n g . 

T h e o r e m 2.9. Suppose tha t J ^ : (d^/dt^) - R^ is a s e q u e n c e of dif
f e r e n t i a l o p e r a t o r s of the type we have been c o n s i d e r i n g , k = 1,2, . . . , tha t 
(W ,Q ) is a sequence of bounda ry c o n d i t i o n s , and tha t aj^ is a s e q u e n c e of 
r e a l n u m b e r s . 

Suppose that : 

l im R^ = R^ 

l im Wl̂  = W ; l im Q^ = Q ; 
k-»oo k-»a> 

l im aj^ = a > 0 
k-*oo 

Suppose f u r t h e r that vk(t) , 0 ^ t ^ aj,., is a s equence of C^ c u r v e s in V 
sa t i s fy ing : 

the (wl^ ,Q^)-boundary condi t ion a t t = 0 

vk(ak) = 0 

J^(vk) = 0 

r " ' ' | i v k ( t ) | | d t s i . 

Then, a t l e a s t one s u b s e q u e n c e of the vy c o n v e r g e s , along wi th i t s f i r s t 
two d e r i v a t i v e s , un i fo rmly to a C" c u r v e v(t), Q s t S a . that is a so1u t in~nf 
J(v) = 0, the (W,Q)-boundary condi t ion, and v(a) = ~ 

Proof. 

Vk(t) 
Let uk(t) = 

l|vk(0)l| + | |vi,(0)| | 
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Since | |ui^(0) | | and | |uj^(0)| | a r e s i ^ we can suppose a f te r at m o s t t ak ing s u b s e 
q u e n c e s tha t l i m Ujj.(o) = Uo, l i m Uĵ .(0) = u j . By the e x i s t e n c e t h e o r e m for 

k->oo k-<-a= , 
o r d i n a r y l i n e a r d i f f e r en t i a l e q u a t i o n s of the type J'^ - 0, uj;.(t) c o n v e r g e s , 
a long wi th i t s f i r s t two d e r i v a t i v e s , u n i f o r m l y to a C^ non iden t i ca l ly z e r o 
c u r v e u(t) , O S t S a , t ha t i s a so lu t ion of j ( u ) = 0, the (W,Q) -bounda ry c o n 
d i t ion , and u(a) = 0. Then , a l s o : 

lim r iiuk(t)r dt = r iiu(t)iidt 
But a l s o . 

ll-k(t)| |dt 
l|vk(0)|| + ||vi,(0)|| 

H e n c e , | | vk(0) | | -I- | | vk(0) | | i t se l f i s bounded, and we can apply the e x i s t e n c e 
t h e o r e m for the s y s t e m s jl"- = 0 to infer the e x i s t e n c e of a c u r v e v(t) t o 
w a r d s w h i c h vj^.(t) and i t s f i r s t two d e r i v a t i v e s conve rge un i fo rmly . Q .E .D. 

We can now p r o c e e d to the proof of the Index T h e o r e m . It is m o s t 
conven i en t to a r r a n g e the proof so that the final r e s u l t wi l l a p p e a r a s a 
s t a t e m e n t that d i f fe ren t k i n d s of i nd i ce s a r e in r e a l i t y the s a m e . Hence , 
we now i n t r o d u c e the d i f fe ren t i n d i c e s , and a l s o the s o - c a l l e d a u g m e n t e d 
i n d i c e s . 

Def ini t ion. Le t a be a pos i t i ve r e a l n u m b e r . 

I](0,a) = The s u m of ind ices of the focal poin ts con ta ined in the 
i n t e r v a l [ 0 , a ) . 

Al i (0 ,a) = The s u m of ind ices of the focal po in t s con ta ined in the 
i n t e r v a l [0 , a ] . 

( T h u s , All i^ '•be a u g m e n t e d index c o r r e s p o n d i n g to the index Ij.) 

12(0,a) = The m a x i m a l d i m e n s i o n of a l i n e a r s u b s p a c e of n (0 , a ) 
on wh ich the f o r m v -• l(v) is nega t ive def in i te . 

Al2(0,a) = The m a x i m a l d i m e n s i o n of a l i n e a r s u b s p a c e if fl(0,a) 
on wh ich the f o r m v -» l (v ) is nega t ive s e m i d e f i n i t e . 

13(0,3) = The m a x i m a l n u m b e r of l i n e a r l y independent , Q} e i g e n 
funct ions of the d i f f e ren t i a l o p e r a t o r (dydt^) + Rt c o r 
r e s p o n d i n g to pos i t i ve e i g e n v a l u e s that a l s o sa t i s fy the 
b o u n d a r y cond i t ions imp l i ed by m e m b e r s h i p in fl(0,a). 



Al3(0,a) = The maximal number of linearly independent C eigen
functions of the differential operator (dVdt^) + Rt cor 
responding to non-negative eigenvalues that also satisfy 
the boundary conditions implied by membership in 
n(0,a). 

Note that several facts follow readily: 

Al3(0,a) - l3(0,a) = Ali(0,a) - li(0,a) (2.8) 

= the index of the focal point w (if a is a focal point) 

= 0, if a is not a focal point. 

I3(0,a)si3(0,a) (2.9) 

Al3(0,a)s(Al2(0,a)) . 

Proof. Suppose that v(t), O ^ t ^ a , lies in 0(0,a) and satisfies: 

v"(t) -I- Rt(v(t)) = X ^ t ) , with X 5=0 . 

- ^' f | | (v(t)) |Pdt = - r <v(t,v"(t)) -t Rt(v(t))> dt 
•^0 Jo 

equals, after integrating by parts and taking into account the boundary con
ditions satisfied by v, 

- Q(v(0),v(0)) + f | |V(t)| |^ - <v(t),Rt(v(t))> dt = I(v) . 

Then, 

0 

Then, l(v) s o . 

To prove (2.9), notice now that v — l(v) res t r ic ted to the linear sub-
space of fi(0,a) spanned by the positive eigenfunctions of (d^/dt^) -I- Rt is 
negative definite. Similarly, v — l(v) is negative semidefinite on the sub-
space of O(0,a) spanned by the non-negative eigenfunctions of n(0,a). 

Lemma 2.10. Al3(0,a) is finite. 

Proof- Suppose otherwise, i.e., there are an infinite number of C^ 
eigenfunctions vk(t), k=l ,2 , . . . , 0 s t s 1, of (dVdt^) -I- R̂ . corresponding to 
eigenvalues \J . and satisfying the boundary condition corresponding to 
lying in n(0,a). 
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Then, 

We can suppose without loss of generality that 

pa. 
!Q(vk(0),Vk(0))|-f / <vk(t),vi,(t)> dt = 1 (2.10a) 

I <vi^(t),vj(t)> dt = 0 i f k / j . (2.10b) 

^k = / <Vk+ Rt(vk(t)). vk(t)> dt = -Q(vk(0),vk(0)) 

- r l | v k ( t ) r - <Rt(vk(t)),Vk(t)> dt . 

£ -Q(vi^(0),vk(0)) + r <Rt(vk(t)),Vk(t)> dt . 

Now, there is a real number 6 such that: 

<Rt(v),v> s 6 <v,v> f o r a l l v £ V , Q S t S a 

Then, 

/.a 
^k - lQ(vk(0),Vi,(0))| + .6 / <vi^(t),vi^(t)> dt 

s I + 6 

i.e., the sequence (^v) is bounded. We can then suppose, after possibly 
taking subsequences, that 

l im Xĵ  = A. , 
k—co 

and that vĵ .(t) converges as k -• •», along with its f i rs t two derivatives, uni
formly to a curve v(t) that is an eigenfunction for eigenvalue X (using 
Theorem 2.9). But, this contradicts (2.10b). 
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L e m m a 2 . 1 1 . 

Al3(0,a) = Al2(0,a) 

13(0,a) = 12(0,a) . 

Proof . We p r o v e the f i r s t equa l i ty : The s e c o n d is s i m i l a r . L e t 
d = Al3(0,a). Then, there are d l i n e a r l y i ndependen t e igen func t ions Vi(t), 
...,V(j(t) in n ( 0 , a ) , wi th e i g e n v a l u e s X̂  X^. We can n o r m a l i z e so tha t : 

r <vj( t ) ,vk( t )> dt = 6 jk f o r l S j , k s d 

What we m u s t show is that , if v(t) £ 0 ( 0 , a ) s a t i s f i e s : 

, a 
<vi^(t) ,v(t)> = 0 f o r l s k s d , (2.11) 

/ ' 

t h e n l ( v ) > 0 . Suppose o t h e r w i s e , i . e . , such a v e x i s t s w i th l(v) s 0. Now, 

m i n i m i z e l(v) over a l l v£n(0 ,a ) sa t i s fy ing (2.11) and / | | v ( t ) | | ^ dt =, 1. 

Using the " d i r e c t m e t h o d " of the ca l cu lus of v a r i a t i o n s , [ l ] t h i s m i n i m u m 
is t aken on by a C^ function Vo(t) in 0 (0 ,a ) that i s a l s o an e igenfunc t ion of 
(dydt^) -¥ Rt wi th e igenva lue Xo. But, th is e igenfunct ion would then have 
to sa t i s fy : 

O- I (vo) = - Xo / | | vo( t ) | | 2d t / l|vo( 

fo rc ing X j ^ O , c o n t r a d i c t i n g the def ini t ion of d. 

L e m m a 2.12. ][f 0 s a s b , t hen 

I2 (0 , a ) s i2 (0 ,b ) 

Al2(0,a) s Al2(0,b) 

A I i ( 0 , a ) s i 2 ( 0 , b ) 

Proof . Choose £ suff ic ient ly s m a l l and pos i t i ve so tha t a -I- £ £ b , 
and so that t h e r e a r e no m u t u a l l y conjugate poin ts on the i n t e r v a l [ a - £,a-l-'£] 
We a r e now going to define a l i n e a r mapp ing 
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*£: 0(0,a) -* 0(0,b) 

such that: 

l(0£(v)) s I(v) for each v£ 0(0,a) (2.12) 

by making use of Lemma 2.8. Explicitly, 0e(v)(t), 0 s t s b, is to be a 
continuous piecewise C^ curve in V such that: 

*e(v)(t) = v(t) f o r O s t S a - £ (2.13a) 

0e(v)(t) is a solution of —- -I- R* = 0 , (2.13b) 
dt^ 

with: 

0£(v)(a- £) = v(a-e ) 

0e(v)(a-t£) = 0 

0e(v)(t) = 0 fo ra4-£ s t s b . (2.13c) 

The reader will readily verify that 0£ is a bonafide linear mapping that 
(using Lemma 2.8) satisfies (2.12). Suppose now that Vi(t) v^{t) a re 
l inearly independent elements of 0(0,a) on which the form I is < 0. By 
(2.12), l( 0g(vi^))< 0 for 1 s k Sd. We must then show that 0g(vk)(t) a re 
l inearly independent if £ is sufficiently small . Suppose otherwise, i.e., 

d 
there i s , for each £, a relation of the form: Y, a.k( £)vk(t) = 0 valid for 
O s t S a - £ . ^=' 

We can normalize so that 

Y -k(£)^ = i • 
k=i 

Then, there would be a sequence of £ going to zero such that ayJ,e)^a.-^, 
and a relat ion of the form: 

d 

Y ^kVt) = 0 

k=i 

valid for 0 S t s i , contradicting that the vj,. were linearly independent. 
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This p r o v e s the f i r s t i nequa l i ty in L e m m a 2 .12 . The s e c o n d is 
s i m i l a r . The t h i r d invo lves a s l igh t m o d i f i c a t i o n of the a r g u m e n t . L e t 
a i , . . . , a f be the focal po in t s in the i n t e r v a l [ 0 , a ] , a r r a n g e d so tha t : 

0 < ai < a2 < . . . < a£ s a 

Le t d i , . . . ,d f be the i nd i ce s of e a c h of the focal p o i n t s . L e t Vi(t), . ..,V(ii(t), 
O S t S a j , be in 0 (0 , a ; ) , be l i n e a r l y independen t , and C^, and sa t i s fy 
(dydt^) -I- Rj = 0. Then, 0 g ( v i ) , . . . , 0e (vd i ) span a s u b s p a c e of 0 (0 ,b ) on 
which I i s < 0. To s ee t h i s , u s e the c r i t e r i o n for equa l i t y in L e m m a 2.8 
and the fact that vk(t) cannot be z e r o for t suf f ic ien t ly c l o s e to a j , 
1 s k s d j . S i m i l a r l y , apply th i s c o n s t r u c t i o n to e a c h of the foca l p o i n t s . 
It is e a s i l y s e e n tha t the s u b s p a c e s of O(0,b) ob t a ined in th i s w a y a r e a l l 
l i n e a r l y independen t of e a c h o t h e r , hence span a s u b s p a c e of 0 (0 ,b ) of 
d i m e n s i o n di+. ..-tdf = Al^{0,a). 

L e m m a 2 .13 . If £ is suff ic ient ly s m a l l , 

A l3 (0 ,a - t£ ) s Al3(0,a) 

Proof. Suppose o t h e r w i s e . Le t ey^, k = l , 2 , . . . , be a s e q u e n c e of r e a l 
n u m b e r s , wi th £ k -" 0 a s k -> oô  and wi th 

Al3(0,a-l-£i^)=: Al3(0,a) -I- 1 

Let Vj_k(t), O S j s Al3(0,a) -I- 1, O S k < i =», OS t Sa-I-Ej^, be c u r v e s in 
O(0,a-t£i;.) that a r e C^, that a r e e igenfunct ions of ( d ^ d t ^ ) -I- Rt wi th n o n -
nega t ive e i g e n v a l u e s , and that , for fixed k, a r e l i n e a r l y i ndependen t . 
Using T h e o r e m 2.9, we can a r r a n g e (by taking s u b s e q u e n c e s and n o r m a l i z 
ing) that : 

l i m Vj k(t) = vj(t) 
k->.oo 

oa-^£k 

J < -J i ,k ( t ) .Vj^ ,k ( ^ ' > ^ * = ^JiJz 

tha t the f i r s t two d e r i v a t i v e s c o n v e r g e un i fo rmly for 0:<; t < a, and tha t the 
c o r r e s p o n d i n g e i g e n v a l u e s of (dVdt^) + R^ c o n v e r g e . Then, 

J <^ j i f ' ) ' ^J2(*)> '^t = ^jija- f ° r l s j ^ , j ^ s A I , ( 0 , a ) - f 1 . 
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But, the vj a r e C^, be long to 0 ( 0 , a ) , and a r e e igenfunct ions of (d^d t^ ) + R^ 
w i t h n o n - n e g a t i v e e i g e n v a l u e s , and a r e l i n e a r l y independent , a c o n t r a d i c t i o n . 

Now we can p r o v e the Index T h e o r e m i tself . Note that it is e q u i v a 
l en t to the s t a t e m e n t : 

l i (0 ,a ) = 12(0,a) = 13(0,a) . (2.14) 

Note tha t we have a l r e a d y p r o v e d the s econd of t h e s e e q u a l i t i e s 
( L e m m a 2.11) . The c o r o l l a r y to L e m m a 2.7 i m p l i e s that the f i r s t holds 
if a i s suf f ic ien t ly s m a l l . A s s u m i n g that (2.14) i s t rue for a, we sha l l 
p r o v e it i s t r u e for a-l-£, if e i s suff ic ient ly s m a l l and p o s i t i v e . Now, 
Ii(0,a-H£) = l i (0 ,a ) + ( index of the focal point a) . By L e m m a 2.12, 

13(0,a) = 12(0,a) s l2(0,a-l-e) = l3(0,a-l-£) 

SAl3(0 ,a ) if £ is suff ic ient ly s m a l l , by L e m m a 2 .13 , 

= 13(0,3) -I- index of a. 

I i ( 0 , a + £ ) Sl2(0,a-t £) = l 3 ( 0 , a - t £ ) s 13(0,3) -t index of a. 

Thus , l^{0,a+e) - index of a = l i (0 , a ) , which p r o v e s (2.14) for a-l-£. Then, 
the s e t of a l l n u m b e r s b such that (2.14) is t rue for a l l a £ [ 0 , b ] is open. 
To c o m p l e t e the proof, we m u s t show that it is c lo sed . Suppose , then , that 
aj^ is a m o n o t o n e - i n c r e a s i n g s e q u e n c e , 

l i m aj^ = a , 
k-«x) 

s u c h tha t (2.14) is t r u e for e a c h aj^. We m u s t p r o v e it i s t r u e for a a l s o . 
T h u s , we h a v e : 

l i (0 ,ak) = l2(0,ak) for k = l , 2 

F r o m the def in i t ion of I i , we h a v e : 

l i m li(0,aj^) = l i (0 ,a) 
k—oo 

By L e m m a 2 .12 , l^iO.ayj ^ IziO,a. 

Let us s u p p o s e tha t l i m 
k->oo 

12(0,a) > 12(0,aj^) for a l l k. 

Le t us s u p p o s e tha t l i m 12(0,ak) / 12(0,a); i . e . 
k->oo 
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To complete the proof, we will show that: 

13(0,3) s 12(0,3-£) for £ sufficiently smsll (2.15) 

Suppose, then, th3t Vi(t),...,Vd(t) 3re line3rly independent Ĉ  eigen
functions of (dVdt^) + Rt for positive eigenvalues \^,...,X ^ that lie in 
0(0,a) (d = 13(0,3)). Choose £> 0 sufficiently small, so that there are no 
mutually conjugate points on the interv3l [a ,a-2£] . Let Vj (t) v^(t), 
O S t S a - e , be continuous piecewise C^ curves in V defined as follows: 

v^(t) = vj^(t) for 0 s t S a - 2 £ 1 s k s d 

- ^ -f Rt(v^)(t) = 0 for a-2£ s t s a - £ , I s k S d 
d t 

(Uses Lemma 2.8 to construct these curves.) Since lim l(v?) = l(vk)"sO, 
£—0 

for 1 s k s d, we see that l(vS) < 0 if £ is sufficiently small . By an 3rgu-
ment simil3r to that used in proving Lemms 2.12, we see th3t v*,...,v|^ are 
linearly independent if £ is sufficiently small. This proves (2.14) and 
finishes the proof of the Index Theorem itself. 

3. FOCAL POINTS IN CLASSICAL MECHANICS 
AND GEOMETRIC OPTICS 

We shall take as a starting point the Hamiltonian "model" of c las
sical mechanics [8]. Thus, we are given a space of variables qi,. . . ,q 
describing configuration space, a space of variables p,, . . . ,p describing 
momentum space, and the product space of variables (qi,p;), i s i s n, 
describing phase space. Where convenient, we will use vector notation: 
P = (Pi). q = (qi). etc. An addition3l variable, labelled as t, is given as 
the time variable. A real-valued function H(p,q,t) on (phase x t ime)-space, 
the Hamiltonian (usually the energy)of the system,describes the development 
of the system in time via the Hamilton equations: 

dqi 
dt 

dpi 
dt 

= 0 (q(t),p(t),t) 

= ^ (q(t).p(t), t) 
(3.1) 
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Using a vector notation, we rewrite this as : 

dq 5H , , , , , , 
dT = a7 (q(t).p(t).t) ; 

dp 3H , , , , , , 
i f =-a^(q(t).p(t).t) . 

(3.1-) 

Now, suppose that we are given a one-parameter family of solutions of 
(3.1), depending on, say, a parameter s, OS s s 1, reducing, when s = 0, 
to a given solution (q(t),p(t)). Thus, analytically, we are given functions 
(q(s,t),p(s,t)) of two var iables , with: 

dT - s 7 (q.p.t) 

Sp _ SH . , 
(3 .2 ) 

Suppose that 

Q(t) = 
Os -(̂ ) - k 

Hence, (q(s,t), p(s,t)) admits a Taylor expansion of the form: 

q(s,t) = q(t) -̂  Q(t)s-t... ; 

p(s,t) = p(t) -̂  P(t)s-H... 
(3 .3 ) 

It is then a reasonable supposition that the behavior of the solution 
t -• (q(s,t),p(s,t)) for nonzero but small s is, compared with t -* (q(t),p(t)), 
regulated by the behavior of the functions t -• (Q(t),P(t)). Actually, from 
the technical point of view things are a good deal more complicated than 
this, but at any rate in applied problems this is a supposition that can be 
checked by experiment and that can be used as a basis for design. Now, 
the functions (Q(t),P(t)) themselves are the solution of a system of ordinary 
differential equations obtained by differentiating (3.2) with respect to s, 
then setting s = 0. 

SQ 
St 

S P 

Tt 

^^H p(,) ^ ^ ^(^) 
Spdp 

SpSq P t 

SqSp 

__afH_ 
9qSq 

(3 .4) 

Q(t) 
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These are the tensor variational equ3tions of the equations (3.1), based on 
the given solution (q(t),p(t)). The coefficients are functions of t (e.g., 
(5^H/Spi9pj) (q(t),p(t),t)) that depend on H 3nd the base solution (q(t),p(t),t). 

A curve (q(t)) in q-space which is the projection of a curve in phase 
space of a solution of (3.1) is called an extremal, (in case the Hamiltonian 
is derived from a problem in the calculus of variat ions, these are just the 
curves which satisfy the Euler-Lagrange equations, whence the name.) In 
physical problems, extremals do not occur individually, but occur imbedded 
in certain families of extremals , called extremal fields. Each such ex
t remal field is determined by a solution of the Hamilton-Jacobi part ial dif
ferential equ3tion, which is a real-valued function S(q,t) on q x t-space 
such that: 

| f * H ( , . | f , . ) = 0 . - ,3.5, 

In fact, the curves satisfying the following system of ordinary differential 
equations are extremals, forming an n-parameter family (a "congruence," 
in classical language) of extremals that will be the extremal field cor 
responding to S(q,t). 

dq S H / 3S \ , , 
dr = ^ ^ ^ . t j . (3.6) 

To verify this statement, we will show that the solutions of (3.6) are ex
t remals . Let p(t) be the curve 

Ss 
p(t) = ^ (q(t),t) (3.7) 

for a given solution of q(t) of (3.6). 

We must show that (q(t),p(t)) is a solution of the Hamilton equa
tions (3.1). Now, (3.6) and (3.7) together give one-half of the Hamilton 
equations. The second half will follow from the fact that S(q,t) is a solu
tion of the Hamilton-Jacobi equation (3.5). In fact: 

d^W^^q(^(^)-^)d-fW^^«l(0. t ) 

q< 

From (3.5) 

- ^ - M /'̂  is. \ an / ss \ ŝ s 
dqdt - " Sq l''- a q ' V " S p 1̂ '̂ ' 5 ^ ' ' j § ^ • 
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Combining these two relat ions, we have: 

dp(t) hU f , , SS , , \ S H / , , , . \ 

i.e., (q(t),p(t)) together solve the Hamilton equations. 

Now, (3.6) can be solved, with q(t) prescr ibed at, say, t = 0, as any 
points q° of q-space . Thus, we get an n-parameter family of extremals . 
(However, only those n -paramete r family extremals that a r i se in this way 
from a solution of the Hamilton-Jacobi equation (3.5) are called extremal 
fields.) 

There is another interpretation of the function S(q,t) that solves 
(3.5) in t e rms of action. (If (q(t),p(t)) is any curve in phase space, 0 s t S a , 
then the action along the curve is 

r p ( t ) ^ - H(q(t),p(t).t)dt) 

To see this, given an extremal q(t) that is imbedded in an extremal field 
determined by S(q,t), i.e., that solves (3.6), let us compute the action along 
the curve (q(t),p(t) = (Ss /Sq) (q(t),t)) in phase space. 

Action = f p(t) ^ _ H ( q ( t ) , p ( t ) , t ) d t 

= / ' I f !*)••) "-!?* If ".«-•>-

= f 4: (S(q(t),t)) dt = S(q(a),3) - S(q(0),0) . 

Thus, the action along this curve in phase space is just the difference in 
values of S on the end points of the corresponding extremal curve in 
q-space . This observation lies at the hear t of the famous relation between 
c lass ica l mechanics and geometrical optics. The extrem3ls of the extremal 
field a re the " rays" corresponding to the wave fronts, which a r e , for fixed t, 
the surfaces S(q,t) = constant. 
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Suppose now that we star t off with a submanifold A of q-space, with 
a given extremal field, with S(q,0) = constant for qeA. In f3ct, we can 
normalize things so that S(q,0) = 0 for q£A. Let us choose a time interval, 
say 0 S t S a. For q°£A, there is a unique solution of q(t,q°) of (3.6) with 
q(0,q°) = 0. Following this along to t = a gives us a m3pping q° -> q(a,q°), 
representing the "optical image" of the submanifold A. In geometrical 
optics, one is interested in actually computing this submanifold. In p r ac 
tice, one must be satisfied with an approximate calculation. We will now 
show how making this approximste calcul3tion is equiv3lent to solving the 
line3r variational equations (3.4) with an appropriate boundary condition at 
t = 0, i.e., just the sort of problem dealt with in Section 2. We can also 
suppose, by choosing the coordinate system correct ly, that A is a linear 
subspace of q-space. 

We can normalize so that the origin O of the q coordinates is a 
point of A, and so that q(t) is the curve of the extremal field with q(0) = 0. 
Let s be another real parameter designed to parameter ize curves along 
A; denote a typical curve in A by q°(s). We can then, for each s, find a 
curve t — q(s,t) of the extremal curve with q(s,o) = q°(s). The curve 
s -» q(s,a) will then represent the corresponding curve in the optical image. 
By an "approximate calculation" we mean that we must be satisfied with 
computing the coefficient Q(t) in the Taylor expansion: 

q(s,t) = q(t) + Qit)s + ... 

Now, for fixed s, the curve t ^ (q(s,t),p(s,t) = (ds /Sq) (q(s,t),t)) is a solu
tion of the Hamilton equations (3.1). Thus, if the Taylor expansion of 
p(s,t) is 

p(s,t) = p(t) + P{t)s + ... 

we have seen that (Q(t),P(t)) is a solution of the linear variational equations 
(3.4) based on the given solution (q(t),p(t)). To determine (Q(t),P(t)) com
pletely, it only remains then to find the boundary conditions at t = 0. Now, 
Q(0) = (Sq/Ss) (0,0); hence, Q(0) must be in the tangent space to A at 
q° = 0. Also, the fact that q°(s) lies in A and that q ^ S(q,o) is constant on 
A gives: 

= P(S,0) ^ ; 
ds 

hence, 

p(0)Q(0) = 0 
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Since this must be true for essential ly any curve in A starting at O, we 
see that the vector p(0) must be perpendicular to the tangent space to A 
at O. Hence we can differentiate with respect to s again and set s = 0, 
to obtain: 

P(0) Q(0) = 0 

Finally, then, the boundary conditions satisfied by (Q(t),P(t)) at t = 0 a re : 

Q(0) belongs to the tangent space to A at O . (3.8a) 

P(0) is perpendicular to the tangent space to A at O . (3.8b) 

We want to t ransform conditions (3.8) into conditions on Q(0) and 
Q'(0) in order to relate to the work in Section 2. Return to the linear 
variational equations (3.4), wri t ten as : 

^ = A(t)P(t) + B(t)Q(t) ; 

(3.4') 

^ = - *B(t)P(t) + C(t)Q(t) . 

(A(t),B(t),C(t)) a re n x n ma t r i ce s , given as follows in te rms of H(p,q,t) 
and the base solution of (p(t),q(t)) of (3.1). 

S^H , , , , , ^ „ , ^ S ' H 
• ' ^ • \^^L),p(Li,Li ; 

(3.9) 

V ^ ) = § ^ ('^(^^•PW'^) •• V ' ) = a^^(^W'PW'*) '• 

cij(*) = - a l S V ('^(''•p(^)'') •• *^ij('' = Ĵi<*' 3 q . 0 q . 

(•denotes t ranspose of the matrix) 

We will suppose that: 

det A(t) / 0 for all t ; (3.10) 

det (^)^° 
For the Hamiltonians ar is ing from a calculus-of-variations problem, (3.10) 
corresponds to supposing that the variational problem is regular. (All of 
the usual problems from class ical mechanics and optics satisfy this condi
tion.) Let A(t)"' denote the inverse matr ix . Then, 

W.^-l (^ - B(t)Q(t)) 



30 

hence: 

1^ (A(t)-' ^ - A(t)-' B(t)Q(t)) = - *BA-' - ^ + (*BA-' B -̂  C)Q 

(3.11) 
dt 

The boundary conditions satisfied at t = 0 now take the form: 

Q(0)£W (3.12a) 

A(0)-' ( ^ (0) - B(0)Q(0)] is perpendicular to W . (3.12b) 

Of course, if A and B are suitably res t r ic ted, we immediately get 
a problem of the type considered in Section 2. For example, A(t) = iden
tity matr ix, B(t) = 0 will do the job (since C is automatically a symmetric 
matrix). However, it is also possible to proceed directly with the second-
order system of differential equations (3.11) with initial values (3.12). 
Morse considers this system, and the proof of Section 2 gives the Morse 
Index Theorem again: We dealt with the simple version in Section 2 merely 
to save notational energy. Note also that a simplification has been made in 
the initial conditions (3.12) because we chose our coordinates in q-space so 
that the submanifold W of q-space for which we are finding the approxi
mate optical image is a linear subspace. Not having made this assumption 
would have added more terms to (3.12b), representing the "curvature" of 
W with respect to the q-coordinate system. 

Note the physical significance of the focal point idea; A number 
a< 0 would be a focal point if there exists a nonzero solution Q(t) of 
(3.11), satisfying (3.12) and Q(a) = 0. Thus, the optical image of W would 
degenerate in dimension at t = a. A designer of optical instruments would 
have an obvious interest in finding the first such focal point. (This is also 
the differential geometer 's chief interest.) But, the Morse Index Theorem 
is ideally suited to the job of estimating the location of the first focal point. 
Several computations of this type can be found in Ref. (5), in the context of 
Riemannian geometry. 
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